Implementation of the Greedy Algorithm in Phrase Pattern Matching for a Text Recognition System

Authors

  • Risky Amelia Universitas Bina Darma, Palembang, Indonesia
  • Tata Sutabri Universitas Bina Darma, Palembang, Indonesia

DOI:

https://doi.org/10.56988/chiprof.v4i2.85

Keywords:

Greedy algorithm, Text Recognition, Pattern Matching

Abstract

The Greedy pattern-matching algorithm is a phrase pattern-matching method that works by selecting the optimal solution at each step without backtracking. This approach is applied in text recognition systems for keyword search, natural language processing, and automatic text filters. This research analyzes the performance of the algorithm through computational experiments and literature review by evaluating the efficiency of execution time, number of character comparisons, and matching success rate. The results show that the algorithm offers high speed in pattern matching, especially on large datasets, as it is able to optimally shift the search index. However, its accuracy decreases when handling complex patterns or phrases that have many similarities. By combining this algorithm with heuristics or data preprocessing techniques, its drawbacks can be minimized, thus remaining an effective solution in text recognition systems that require fast and real-time processing.

Downloads

Download data is not yet available.

References

I. Akhmetov, R. Mussabayev, and A. Gelbukh, “Reaching for upper bound ROUGE score of extractive summarization methods,” PeerJ Comput Sci, vol. 8, p. e1103, Sep. 2022, doi: 10.7717/peerj-cs.1103.

S.-W. PARK, J. PARK, and B. C. JUNG, “On the Sparse Signal Recovery with Parallel Orthogonal Matching Pursuit,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E96.A, no. 12, pp. 2728–2730, 2013, doi: 10.1587/transfun.E96.A.2728.

K. Gupta and A. Majumdar, “Greedy Algorithms for Non-linear Sparse Recovery,” 2016, pp. 99–108. doi: 10.1007/978-81-322-2625-3_9.

A. B. Doumi, F. E. Abualadas, M. M. A. Shquier, M. Asassfeh, B. M. Elzaghmouri, and K. M. Alhawity, “New Extracted Features to Recognize Faces Effected by Occlusions and Common Variations,” Journal of Advanced Research in Applied Sciences and Engineering Technology, pp. 211–239, Oct. 2024, doi: 10.37934/araset.57.1.211239.

G. Bohner and M. Sahani, “Convolutional higher order matching pursuit,” in 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), IEEE, Sep. 2016, pp. 1–6. doi: 10.1109/MLSP.2016.7738847.

L. Khalil and C. Konrad, Constructing large matchings via query access to a maximal matching oracle. 2020.

K. Voulgaris, M. Davies, and M. Yaghoobi, Deepmp for non-negative sparse decomposition. 2020.

D. A. Tarigan, A. O. Buaton, B. Briyandana, E. R. Safitri, and R. Rosnelly, “Analysis of String Matching Application on Serial Number Using Boyer Moore Algorithm,” Journal of Computer Networks, Architecture and High Performance Computing, vol. 6, no. 1, pp. 237–246, Jan. 2024, doi: 10.47709/cnahpc.v6i1.3410.

D. Hendrian, Y. Ueki, K. Narisawa, R. Yoshinaka, and A. Shinohara, “Permuted Pattern Matching Algorithms on Multi-Track Strings,” Algorithms, vol. 12, no. 4, p. 73, Apr. 2019, doi: 10.3390/a12040073.

C. Irawan and M. R. Pratama, “Perbandingan Algoritma Boyer-Moore dan Brute Force pada Pencarian Kamus Besar Bahasa Indonesia Berbasis Android,” BIOS : Jurnal Teknologi Informasi dan Rekayasa Komputer, vol. 1, no. 2, pp. 54–60, Feb. 2021, doi: 10.37148/bios.v1i2.13.

A. Kostanyan, “Fuzzy String Matching Using a Prefix Table,” Mathematical Problems of Computer Science, pp. 116–121, Dec. 2020, doi: 10.51408/1963-0065.

Y. A. Putra and T. Sutabri, “ANALISIS PENYADAPAN PADA APLIKASI WHATSAPP DENGAN MENGGUNAKAN METODE SINKRONISASI DATA,” Blantika: Multidisciplinary Journal, vol. 1, no. 2, pp. 132–141, Feb. 2023, doi: 10.57096/blantika.v1i2.8.

T. Sutabri, Analisis Sistem Informasi. Yogyakarta: Andi, 2012.

T. Sutabri, Pengantar Teknologi Informasi. Yogyakarta: Andi, 2014.

E. W. Pratiwi and Mhd. Z. Siambaton, “Aplikasi Penjadwalan Dokter Pada Rumah Sakit Umum Kota Pinang dengan Menggunakan Algoritma Greedy,” Hello World Jurnal Ilmu Komputer, vol. 1, no. 1, pp. 1–9, Apr. 2022, doi: 10.56211/helloworld.v1i1.4.

R. Amelia and S. Warianti, “ANALISIS STRATEGI MENINGKATKAN VIRALITAS KONTEN PADA SHOPEE LIVE MENGGUNAKAN NATURAL LANGUAGE PROCESSING (NLP),” 2024.

R. D. Saktia Purnama et al., “IMPLEMENTASI PENGGUNAAN ALGORITMA GREEDY BEST FIRST SEARCH UNTUK MENENTUKAN RUTE TERPENDEK DARI CILACAP KE YOGYAKARTA,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 2, Apr. 2024, doi: 10.23960/jitet.v12i2.4068.

F. Nova Arviantino, W. Gata, L. Kurniawati, Y. A. Setiawan, and D. Priansyah, “Penerapan Algoritma Greedy Dalam Pencarian Jalur Terpendek Pada Masjid–Masjid Di Kota Samarinda,” METIK JURNAL, vol. 5, no. 1, pp. 8–11, Jun. 2021, doi: 10.47002/metik.v5i1.188.

F. Firmansyah, Fauziah, and N. Hayati, “ANALISIS PERBANDINGAN DAN IMPLEMENTASI STRING MATCHING DAN SQL QUERY PADA SISTEM INFORMASI PERSEDIAAN OBAT BERBASIS WEB APOTEK ERHA FARMA,” Jurnal Ilmiah Teknologi dan Rekayasa, vol. 27, no. 2, pp. 154–168, Aug. 2022, doi: 10.35760/tr.2022.v27i2.7079.

A. Filcha and M. Hayaty, “Implementasi Algoritma Rabin-Karp untuk Pendeteksi Plagiarisme pada Dokumen Tugas Mahasiswa,” JUITA : Jurnal Informatika, vol. 7, no. 1, p. 25, May 2019, doi: 10.30595/juita.v7i1.4063.

F. U. Faruq and L. Bachtiar, “PENERAPAN DATA MINING ALGORITMA FP-GROWTH UNTUK MENENTUKAN REKOMENDASI PENJUALAN TANAMAN HIDROPONIK DI MENTAYA PONIK,” ZONAsi: Jurnal Sistem Informasi, vol. 5, no. 3, pp. 441–451, Sep. 2023, doi: 10.31849/zn.v5i3.15169.

A. N. Ridho, A. P. A. Masa, and P. P. Widagdo, “IMPLEMENTASI MARKET BASKET ANALYSIS PADA DATA PENJUALAN CV. XYZ MENGGUNAKAN ALGORITMA FP-GROWTH,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 3, Aug. 2024, doi: 10.23960/jitet.v12i3.4541.

E. Nofianti, W. A. Triyanto, and N. Latifah, “PENENTUAN STRATEGI PEMASARAN MENGGUNAKAN FREQUENT PATTERN GROWTH (FP-GROWTH) PADA TOKO KOMPUTER,” Indonesian Journal of Technology, Informatics and Science (IJTIS), vol. 1, no. 2, pp. 59–62, Jun. 2020, doi: 10.24176/ijtis.v1i2.4941.

S. Octarina, G. Sonia, and N. Eliyati, “Implementasi metode Greedy Randomized Adaptive Search Procedure dan model Dotted Board pada Cutting Stock Problem Bentuk Reguler,” Jurnal Penelitian Sains, vol. 23, no. 1, p. 36, Mar. 2021, doi: 10.56064/jps.v23i1.580.

S. R. Cakrawijaya and B. Kriswantara, “PERBANDINGAN KINERJA ALGORITMA STRING MATCHING BOYER-MOORE & KNUTH-MORRIS-PRATT PADA SEO WEB SERVER,” Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika, vol. 18, no. 2, pp. 97–102, Jul. 2021, doi: 10.33751/komputasi.v18i2.3246.

M. A. Nugroho, E. Wuryanto, and K. Faqih, “Optimizing Uncapacitated Facility Location Problem with Cuckoo Search Algorithm based on Gauss Distribution,” SISTEMASI, vol. 12, no. 2, p. 361, May 2023, doi: 10.32520/stmsi.v12i2.2467.

G. F. H. Nainggolan, S. Andryana, and A. Gunaryati, “PENCARIAN BERITA PADA WEB PORTAL MENGGUNAKAN ALGORITMA BRUTE FORCE STRING MATCHING,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 6, no. 1, pp. 1–10, May 2021, doi: 10.29100/jipi.v6i1.1824.

Z. Li et al., “Reliable and Scalable Routing Under Hybrid SDVN Architecture: A Graph Learning Based Method,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 12, pp. 14022–14036, Dec. 2023, doi: 10.1109/TITS.2023.3300082.

M. A. Rakrouki and N. Alharbe, “QoS-Aware Algorithm Based on Task Flow Scheduling in Cloud Computing Environment,” Sensors, vol. 22, no. 7, p. 2632, Mar. 2022, doi: 10.3390/s22072632.

Y. Wang, “Review on greedy algorithm,” Theoretical and Natural Science, vol. 14, no. 1, pp. 233–239, Nov. 2023, doi: 10.54254/2753-8818/14/20241041.

I. F. Lövétei, B. Kővári, and T. Bécsi, “MCTS Based Approach for Solving Real-time Railway Rescheduling Problem,” Periodica Polytechnica Transportation Engineering, vol. 49, no. 3, pp. 283–291, Sep. 2021, doi: 10.3311/PPtr.18584.

S. Lee, “Greedy Algorithm Implementation in Huffman Coding Theory,” International Journal of Software & Hardware Research in Engineering, vol. 8, no. 9, Sep. 2020, doi: 10.26821/IJSHRE.8.9.2020.8905.

J. Yu, “Thompson -Greedy Algorithm: An Improvement to the Regret of Thompson Sampling and -Greedy on Multi-Armed Bandit Problems,” Applied and Computational Engineering, vol. 8, no. 1, pp. 507–516, Aug. 2023, doi: 10.54254/2755-2721/8/20230264.

M. Qi, S. Chen, and H. Bian, “Path planning for ships avoiding movable obstacles based on improved greedy algorithm,” in Second International Conference on Algorithms, Microchips, and Network Applications (AMNA 2023), A. Palanisamy Muthuramalingam and K. Subramaniam, Eds., SPIE, May 2023, p. 22. doi: 10.1117/12.2678945.

L. Tang, X. He, P. Zhao, G. Zhao, Y. Zhou, and Q. Chen, “Virtual Network Function Migration Based on Dynamic Resource Requirements Prediction,” IEEE Access, vol. 7, pp. 112348–112362, 2019, doi: 10.1109/ACCESS.2019.2935014.

Downloads

Published

2025-04-25

How to Cite

Amelia, R., & Sutabri, T. (2025). Implementation of the Greedy Algorithm in Phrase Pattern Matching for a Text Recognition System. International Journal Scientific and Professional, 4(2), 509–515. https://doi.org/10.56988/chiprof.v4i2.85

Most read articles by the same author(s)